Midterm Solutions

1. Let $f(x, y)= \begin{cases}1, & y \geq x^{4} \\ 1, & y \leq 0 \\ 0, & \text { otherwise. }\end{cases}$

Find each of the following limits, or explain that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,1)} f(x, y)$
(b) $\lim _{(x, y) \rightarrow(2,3)} f(x, y)$
(c) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$

Solution. (a) Any point (x, y) inside a ball of sufficiently small radius (say $r<0.5$) around (0,1), satisfies $y \geq x^{4}$. From this, we can infer that

$$
\lim _{(x, y) \rightarrow(0,1)} f(x, y)=1 .
$$

(b) It is easy to see that any point (x, y) inside a ball of sufficiently small radius (say $r<0.5$) around (2,3), does not satify either $y \geq x^{4}$ or $y \leq 0$. Hence,

$$
\lim _{(x, y) \rightarrow(2,3)} f(x, y)=0
$$

(c) Along $x=0$, we can see that

$$
\lim _{h \rightarrow 0} f(0, h)=f(0,-h)=1,
$$

which implies that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1
$$

However, along the curve $y=x^{2}$, both $y \geq x^{4}$ and $y \leq 0$ are not satisfied, which wound imply that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0 .
$$

Hence, the limit does not exist.
2. Let $f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0) .\end{cases}$

Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist, but f is not differentiable at the origin.
Solution. By definition, we know that

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\frac{0}{h}=0 .
$$

In a similar manner, we can also show that $f_{y}(0,0)=0$.
Moreover, along the curve $x=y^{2}$, we can see that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}}{y^{4}+y^{4}}=\frac{1}{2} .
$$

But by definition, $f(0,0)=0$, which shows that f is not continuous at the origin. Hence, f cannot be differentiable at the origin.
3. If $G=f(x, y)$, where $x=r \cos \theta$ and $y=r \sin \theta$. Them show that

$$
\left(G_{x}\right)^{2}+\left(G_{y}\right)^{2}=\left(G_{r}\right)^{2}+\frac{\left(G_{\theta}\right)^{2}}{r^{2}}
$$

Solution. By Chain Rule,

$$
G_{r}=f_{x} x_{r}+f_{y} y_{r}=G_{x}(\cos \theta)+G_{y}(\sin \theta)
$$

and

$$
G_{\theta}=f_{x} x_{\theta}+f_{y} y_{\theta}=G_{x}(-r \sin \theta)+G_{y}(r \cos \theta) .
$$

From this, it is apparent that the equation above holds good.
4. Consider the scalar field $f(x, y)=x^{2}+k x y+y^{2}$.
(a) Show that $(0,0)$ is a critical point for $f(x, y)$ for any $k \in \mathbb{R}$.
(b) For what values of k will $f(x, y)$ have a saddle point at $(0,0)$.
(c) For what values of k does f have local minimum at $(0,0)$?
(d) For what values of k is the Second Derivative Test inconclusive?

Solution. (a) When $k=0, f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$. Equating f_{x} and f_{y} to zero, we get that $(0,0)$ is a critical point.
If $k \neq 0$, then

$$
f_{x}(x, y)=0 \Longrightarrow 2 x+k y=0 \Longrightarrow y=-\frac{2}{k} x
$$

Upon substituting this in $f_{y}(x, y)=0$, we have

$$
k x+2\left(-\frac{2}{k} x\right)=0 \Longrightarrow\left(k-\frac{4}{k}\right) x=0 \Longrightarrow x=0 \text { or } k= \pm 2 .
$$

If $x=0$, then $y=0$, and if $k= \pm 2$, then $y= \pm x$, In both cases, $(0,0)$ is a critical point.
(b) The second partial derivatives are: $f_{x x}=f_{y y}=2$, and $f_{x y}=f_{y x}=$ k. From these, we obtain $\Delta(x, y)=f_{x x} f_{y y}-f_{x y}{ }^{2}=4-k^{2}$. For f to have a saddle point at $(0,0)$, we need $\Delta(0,0)<0$, which would imply that $4<k^{2}$, or $k \in(-\infty, 2) \sqcup(2, \infty)$.
(c) f will have a local minimum at $(0,0)$ when $\Delta(0,0)>0$, that is, when $4-k^{2}>0$, or $k \in(-2,2)$.
(d) The test is inconclusive when $f_{x x}=4-k^{2}=0$, that is when $k= \pm 2$.
5. Show that the sum of the x-, y-, and z-intercepts of any tangent plane to the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{c}$ is a constant. Also, find this constant. (Note that the x-intercept of a graph is the x-coordinate of the point where it meets the x-axis. The y - and z-intercepts are defined analogously.)
Solution. Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be any point on the surface. Then the equation of the tangent plane T_{P} at P can be shown to be

$$
\frac{x}{\sqrt{x_{0}}}+\frac{y}{\sqrt{y_{0}}}+\frac{z}{\sqrt{z_{0}}}=\sqrt{c} .
$$

Clearly, the x-, y-, and z-intercepts of T_{P} are $\sqrt{c x_{0}}, \sqrt{c y_{0}}$, and $\sqrt{c z_{0}}$ respectively. The sum of these intercepts is $\sqrt{c}\left(\sqrt{x_{0}}+\sqrt{y_{0}}+\sqrt{z_{0}}\right)=c$, which is a constant.
6. Find the point closest to the origin on the curve of intersection of the plane $2 y+4 z=5$ and the cone $z^{2}=4 x^{2}+y^{2}$.
Solution. Let $(x, y z)$ be an arbitrary point on the curve of intersection. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ be the square of its distance
from the origin. We want to minimize f subject to the constraints $g(x, y, z)=2 y+4 z$ and $h(x, y, z)=4 x^{2}+y^{2}-z^{2}$.
By the method of Lagrange's Multipliers, we need to simultaneously solve the following system of equations

$$
\begin{gathered}
\nabla f=\lambda \nabla g+\mu \nabla h \\
2 y+4 z=5 \\
z^{2}=4 x^{2}+y^{2} .
\end{gathered}
$$

This yields the following system of five equations in five unknowns,

$$
\begin{gathered}
2 x=8 x \mu \\
2 y=2 \lambda+8 y \mu \\
2 z=4 \lambda-2 z \mu \\
2 y+4 z=5 \\
z^{2}=4 x^{2}+y^{2} .
\end{gathered}
$$

There are two possible solutions to the first equation in the system: $x=0$ (Case 1) or $\mu=\frac{1}{4}$ (Case 2). We now examine these two cases.
Case 1: If $x=0$, then from the fifth equation we get that $z= \pm y$. Upon substituting this in the fourth equation, we get that $y=\frac{5}{6}$ or $y=-\frac{5}{2}$. Therefore, the solutions we obtain from this case are $\left(0, \frac{5}{6}, \frac{5}{6}\right)$ and $\left(0,-\frac{5}{2}, \frac{5}{2}\right)$.
Case 2: If $\mu=\frac{1}{4}$, then from the second equation, we can infer that $\lambda=0$, and by substituting this in the third equation, we get $z=0$. From the fourth equation, we have that $y=\frac{5}{2}$, but this cannot be a feasible solution, as this would then make it impossible to find an x that satisfies the fifth equation.
It is easy to see that among the feasible points, $\left(0, \frac{5}{6}, \frac{5}{6}\right)$ is closest to origin.
7. Find the absolute maximum and minimum values of $f(x, y)=3+x y-$ $x-2 y$ on the closed triangular region with vertices $(1,0),(5,0)$, and $(1,4)$.
Solution. Let D denote the closed traingular region with the three vertices $(1,0),(5,0)$, and $(1,4)$. Since f is a polynomial, it is continuous in D, and hence attains its extremal values in D (by the Extreme Value Theorem). Setting $f_{x}=f_{y}=0$, we obtain $(2,1)$ as the only critical point, and $f(2,1)=1$.

Note that ∂D is a triangle comprised of three line segments: A segment L_{1} joining $(1,4)$ and $(1,0)$, a segment L_{2} joining $(1,0)$ and $(5,0)$, and a segment L_{3} joining $(5,0)$ and $(1,4)$. We will now compute the extremal values of f along ∂D.
Along $L_{1}: x=1$ and $f(1, y)=2-y$ for $y \in[0,4]$, which is a decreasing function in y. So the maximum value is $f(1,0)=2$ and the minimum value is $f(1,4)=-2$.
Along $L_{2}: y=0$ and $f(x, 0)=3-x$ for $x \in[1,5]$, which is a decreasing function in x. Hence, the maximum value is $f(1,0)=2$ and the minimum value is $f(5,0)=-2$.
Along $L_{3}: y=5-x$ and $g(x)=f(x, 5-x)=-(x-3)^{2}+2$ for $x \in[1,5]$. This function has a maximum at $x=3$ (which we can conclude by setting $g^{\prime}(x)=0$), where $f(3,2)=2$, and a minimum at both $(1,4)$ and $(5,0)$, where $f(1,0)=f(5,4)=-1$.
Therefore, the absolute maximum of f on D is $f(1,0)=f(3,2)=2$, and the absolute minimum is $f(1,4)=f(5,0)=-2$.
8. (Bonus) Using Lagrange's Multipliers, deduce that if $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers, then

$$
\sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

In other words, this inequality says that the geometric mean of n numbers is no larger than the arithmetic mean of the numbers.
Solution. We wish to maximize $f\left(x_{1}, \ldots, x_{n}\right)=\sqrt[n]{x_{1} \ldots x_{n}}$ subject to the constraint $g\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\ldots+x_{n}=c$ and $x_{i}>0$. Then
$\nabla f=\left(\frac{1}{n}\left(x_{1} \ldots x_{n}\right)^{\frac{1}{n}-1}\left(x_{2} \ldots x_{n}\right), \ldots, \frac{1}{n}\left(x_{1} \ldots x_{n}\right)^{\frac{1}{n}-1}\left(x_{1} \ldots x_{n-1}\right)\right)$,
and $\nabla g=(1, \ldots, 1)$. Since the x_{i} can be chosen so that f can be made arbritraily close to zero, Y cannot be a point where f attains its minimum. Thus Y is a point of maximum and hence $f(X) \leq f(Y)$, for all $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. In other words, we have the inequality

$$
\sqrt[n]{x_{1} \ldots x_{n}} \leq \sqrt[n]{\frac{c}{n} \ldots \frac{c}{n}}=\frac{c}{n}
$$

Equating $\nabla f=\lambda \nabla g$ and using Lagrange's Multipliers, we have the following system of $n+1$ equations

$$
\begin{gathered}
\frac{1}{n}\left(x_{1} \ldots x_{n}\right)^{\frac{1}{n}-1}\left(x_{2} \ldots x_{n}\right)=\lambda \Longrightarrow\left(x_{1} \ldots x_{n}\right)^{1 / n}=n \lambda x_{1} \\
\vdots \\
\frac{1}{n}\left(x_{1} \ldots x_{n}\right)^{\frac{1}{n}-1}\left(x_{1} \ldots x_{n-1}\right)=\lambda \Longrightarrow\left(x_{1} \ldots x_{n}\right)^{1 / n}=n \lambda x_{n} \\
x_{1}+\ldots+x_{n}=c
\end{gathered}
$$

Thus we have that $\lambda \neq 0$ and $x_{1}=x_{2}=\ldots=x_{n}$. (For if $\lambda=0$, then we cannot have that all $x_{i}>0$.) Then the last equation in the system would imply that $x_{i}=\frac{c}{n}$, for $1 \leq i \leq n$. We conclude that the only point (or vector) where f will have an extremal value is $Y=\left(\frac{c}{n}, \ldots, \frac{c}{n}\right)$.
Since the x_{i} can be chosen so that f can be made arbritraily close to zero, Y cannot be a point where f attains its minimum. Thus Y is a point of maximum and hence $f(X) \leq f(Y)$, for all $X=\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n}. In other words, we have the inequality

$$
\sqrt[n]{x_{1} \ldots x_{n}} \leq \sqrt[n]{\frac{c}{n} \ldots \frac{c}{n}}=\frac{c}{n}
$$

Since $x_{1}+\ldots+x_{n}=c$, we have the required result.

