Midterm Solutions

1, y>at
1. Let f(z,y) =<1, y<0
0, otherwise.

Find each of the following limits, or explain that the limit does not
exist,.

a lim x,
(@), g f@y)

b lim x,
v Jim - f(.y)

c lim x,
©  lm )
Solution. (a) Any point (z,y) inside a ball of sufficiently small radius
(say r < 0.5) around (0, 1), satisfies y > 2*. From this, we can infer
that

lim z,y) = 1.
(afvy)—>(0,1)f( v)

(b) It is easy to see that any point (x,y) inside a ball of sufficiently
small radius (say 7 < 0.5) around (2,3), does not satify either y > z*
or y < 0. Hence,

lim xz,y) = 0.
(rvy)—>(2,3)f( v)

(c) Along = = 0, we can see that
h—0

which implies that

lim z,y) = 1.
($7y)—>(0,0)f( v)

However, along the curve y = 22, both y > z* and y < 0 are not
satisfied, which wound imply that

lim z,y) = 0.
carsion T &Y

Hence, the limit does not exist.



W () £ 0,0)
2. Let f(z,y) = ¢ 22 +y*’ Y ’
0, (z,y) = (0,0).
Show that f,(0,0) and f,(0,0) exist, but f is not differentiable at the
origin.

Solution. By definition, we know that

£,0.0) = lim 70RO = 10,00 _ 0 _

0.
h—0 h h

In a similar manner, we can also show that f,(0,0) = 0.

Moreover, along the curve x = y2, we can see that

y? 1
lim z,y)= lim —F— = .
(,9)—(0,0) fzy) (@y)—00) yt +y* 2

But by definition, f(0,0) = 0, which shows that f is not continuous
at the origin. Hence, f cannot be differentiable at the origin.

3. If G = f(x,y), where x = rcosf and y = rsinf. Them show that

(C?e)Q_

Solution. By Chain Rule,
Gr = faxr + fyyr = G (cos®) + Gy(sin 0)

and
Gy = ferg + fyyp = Gu(—rsinf) + Gy(rcos ).

From this, it is apparent that the equation above holds good.
4. Consider the scalar field f(z,y) = 2% + kzy + y°.

(a) Show that (0,0) is a critical point for f(x,y) for any k € R.
(b) For what values of k will f(x,y) have a saddle point at (0, 0).
(c) For what values of k does f have local minimum at (0,0)?

)

(d) For what values of k is the Second Derivative Test inconclusive?



Solution. (a) When k =0, f;(z,y) = 2z and f,(z,y) = 2y. Equating
fz and fy to zero, we get that (0,0) is a critical point.

If k # 0, then
2
folz,y) =0 = 22+ ky=0 = y=—72
Upon substituting this in fy(x,y) = 0, we have
2 4
k:v—|—2(—%x):0 = (k—E)a::() = x=0o0r k==2.

If x = 0, then y = 0, and if £ = £2, then y = +z, In both cases, (0,0)
is a critical point.

(b) The second partial derivatives are: fyz = fyy = 2, and foy = fye =
k. From these, we obtain A(z,y) = foxfyy — fgcy2 =4—k% For f to
have a saddle point at (0,0), we need A(0,0) < 0, which would imply
that 4 < k2, or k € (—00,2) U (2,00).

(c) f will have a local minimum at (0,0) when A(0,0) > 0, that is,
when 4 — k? > 0, or k € (—2,2).

(d) The test is inconclusive when f,, = 4 — k? = 0, that is when
k= +£2.

. Show that the sum of the z-, y-, and z-intercepts of any tangent plane
to the surface /& + /¥y + 2z = /c is a constant. Also, find this
constant. (Note that the z-intercept of a graph is the x-coordinate
of the point where it meets the z-axis. The y- and z-intercepts are
defined analogously.)

Solution. Let P(xg,%0,20) be any point on the surface. Then the
equation of the tangent plane Tp at P can be shown to be

VZTo o VYo V7o '

Clearly, the z-, y-, and z-intercepts of Tp are /cxg, +/cyg, and /czg
respectively. The sum of these intercepts is v/c(y/Zo + /Yo + v/Z0) = ¢,
which is a constant.

. Find the point closest to the origin on the curve of intersection of the
plane 2y 4+ 4z = 5 and the cone 22 = 422 4 y°.

Solution. Let (z,yz) be an arbitrary point on the curve of inter-
section. Let f(x,y,2) = x? + y? + 2? be the square of its distance



from the origin. We want to minimize f subject to the constraints
g(z,y,2) = 2y + 4z and h(z,y,2) = 402 +y% — 22

By the method of Lagrange’s Multipliers, we need to simultaneously
solve the following system of equations
Vf=AVg+uVh
2y +42=5
2% =422 + y2.
This yields the following system of five equations in five unknowns,

2x = 8xu
2y =22+ 8yu
22 =4\ —2zp
204+42=5
22 = 4a% + 42
There are two possible solutions to the first equation in the system:
z =0 (Case 1) or = 7 (Case 2). We now examine these two cases.

Case 1: If x = 0, then from the fifth equation we get that z = +y.

Upon substituting this in the fourth equation, we get that y = § or
Y= —%. Therefore, the solutions we obtain from this case are (0, §, %)

and (0,—2,2).

Case 2: If p = i, then from the second equation, we can infer that
A = 0, and by substituting this in the third equation, we get z = 0.
From the fourth equation, we have that y = %, but this cannot be a

feasible solution, as this would then make it impossible to find an z
that satisfies the fifth equation.

It is easy to see that among the feasible points, (0, %, %) is closest to
origin.

. Find the absolute maximum and minimum values of f(x,y) = 3+xy—
x — 2y on the closed triangular region with vertices (1,0), (5,0), and
(1,4).

Solution. Let D denote the closed traingular region with the three
vertices (1,0), (5,0), and (1,4). Since f is a polynomial, it is continu-
ous in D, and hence attains its extremal values in D (by the Extreme
Value Theorem). Setting f, = f, = 0, we obtain (2,1) as the only
critical point, and f(2,1) = 1.



Note that 0D is a triangle comprised of three line segments: A segment
L joining (1,4) and (1,0), a segment Ly joining (1,0) and (5,0), and a
segment L3 joining (5,0) and (1,4). We will now compute the extremal
values of f along 9D.

Along L1: x = 1 and f(1,y) = 2—y for y € [0, 4], which is a decreasing
function in y. So the maximum value is f(1,0) = 2 and the minimum
value is f(1,4) = —2.

Along Lo: y = 0 and f(z,0) = 3—z for x € [1,5], which is a decreasing
function in z. Hence, the maximum value is f(1,0) = 2 and the
minimum value is f(5,0) = —2.

Along Ly: y = 5 — 2 and g(z) = f(z,5 —z) = —(z —3)> + 2 for
x € [1,5]. This function has a maximum at x = 3 (which we can
conclude by setting ¢'(x) = 0), where f(3,2) = 2, and a minimum at
both (1,4) and (5,0), where f(1,0) = f(5,4) = —1.

Therefore, the absolute maximum of f on D is f(1,0) = f(3,2) = 2,
and the absolute minimum is f(1,4) = f(5,0) = —2.

. (Bonus) Using Lagrange’s Multipliers, deduce that if z1,z9,...,z,
are positive numbers, then

1 n

Yr1xy ... Ty < — g x;.
n
1=

In other words, this inequality says that the geometric mean of n
numbers is no larger than the arithmetic mean of the numbers.

Solution. We wish to maximize f(z1,...,2,) = {/Z1...2T, subject
to the constraint g(x1,...,2,) =21+ ...+ x, = c and z; > 0. Then

Vf= <;(:c1...:cn)i—l(m...xn),..., (xl...xn)i—l(xl...xn1)>,

and Vg = (1,...,1). Since the x; can be chosen so that f can be
made arbritraily close to zero, Y cannot be a point where f attains its
minimum. Thus Y is a point of maximum and hence f(X) < f(Y),
for all X = (x1,...,2,) € R". In other words, we have the inequality

Yry...on < ¢ =

C
n.

Slo

Cc
n..



Equating Vf = AVg and using Lagrange’s Multipliers, we have the
following system of n 4+ 1 equations

1 1
E(:z:lxn)n Yoy ian) =X = (z1...2,)"" = nAay
1 19 . 1/n _
E(:cla:n)n (1. Tp1) =X = (21...2,)""" =nlzy,
rn+...+x,=c
Thus we have that A # 0 and 1 = x9 = ... = z,. (For if A = 0,
then we cannot have that all z; > 0.) Then the last equation in
the system would imply that z; = %, for 1 < ¢ < n. We conclude
that the only point (or vector) where f will have an extremal value is
Y = (5,....0),

Since the z; can be chosen so that f can be made arbritraily close to
zero, Y cannot be a point where f attains its minimum. Thus Y is a
point of maximum and hence f(X) < f(Y), forall X = (z1,...,z,) €
R™. In other words, we have the inequality

Vry...Tn < ¢ =

C
n.

Slo

C
n..

Since z1 + ...+ x, = ¢, we have the required result.



