
Midterm Solutions

1. Let f(x, y) =


1, y ≥ x4

1, y ≤ 0

0, otherwise.

Find each of the following limits, or explain that the limit does not
exist.

(a) lim
(x,y)→(0,1)

f(x, y)

(b) lim
(x,y)→(2,3)

f(x, y)

(c) lim
(x,y)→(0,0)

f(x, y)

Solution. (a) Any point (x, y) inside a ball of sufficiently small radius
(say r < 0.5) around (0, 1), satisfies y ≥ x4. From this, we can infer
that

lim
(x,y)→(0,1)

f(x, y) = 1.

(b) It is easy to see that any point (x, y) inside a ball of sufficiently
small radius (say r < 0.5) around (2, 3), does not satify either y ≥ x4

or y ≤ 0. Hence,
lim

(x,y)→(2,3)
f(x, y) = 0.

(c) Along x = 0, we can see that

lim
h→0

f(0, h) = f(0,−h) = 1,

which implies that
lim

(x,y)→(0,0)
f(x, y) = 1.

However, along the curve y = x2, both y ≥ x4 and y ≤ 0 are not
satisfied, which wound imply that

lim
(x,y)→(0,0)

f(x, y) = 0.

Hence, the limit does not exist.
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2. Let f(x, y) =


xy2

x2 + y4
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

Show that fx(0, 0) and fy(0, 0) exist, but f is not differentiable at the
origin.

Solution. By definition, we know that

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
=

0

h
= 0.

In a similar manner, we can also show that fy(0, 0) = 0.

Moreover, along the curve x = y2, we can see that

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

y4

y4 + y4
=

1

2
.

But by definition, f(0, 0) = 0, which shows that f is not continuous
at the origin. Hence, f cannot be differentiable at the origin.

3. If G = f(x, y), where x = r cos θ and y = r sin θ. Them show that

(Gx)2 + (Gy)
2 = (Gr)

2 +
(Gθ)

2

r2
.

Solution. By Chain Rule,

Gr = fxxr + fyyr = Gx(cos θ) +Gy(sin θ)

and
Gθ = fxxθ + fyyθ = Gx(−r sin θ) +Gy(r cos θ).

From this, it is apparent that the equation above holds good.

4. Consider the scalar field f(x, y) = x2 + kxy + y2.

(a) Show that (0, 0) is a critical point for f(x, y) for any k ∈ R.

(b) For what values of k will f(x, y) have a saddle point at (0, 0).

(c) For what values of k does f have local minimum at (0, 0)?

(d) For what values of k is the Second Derivative Test inconclusive?
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Solution. (a) When k = 0, fx(x, y) = 2x and fy(x, y) = 2y. Equating
fx and fy to zero, we get that (0, 0) is a critical point.

If k 6= 0, then

fx(x, y) = 0 =⇒ 2x+ ky = 0 =⇒ y = −2

k
x.

Upon substituting this in fy(x, y) = 0, we have

kx+ 2(−2

k
x) = 0 =⇒ (k − 4

k
)x = 0 =⇒ x = 0 or k = ±2.

If x = 0, then y = 0, and if k = ±2, then y = ±x, In both cases, (0, 0)
is a critical point.

(b) The second partial derivatives are: fxx = fyy = 2, and fxy = fyx =
k. From these, we obtain ∆(x, y) = fxxfyy − fxy2 = 4 − k2. For f to
have a saddle point at (0, 0), we need ∆(0, 0) < 0, which would imply
that 4 < k2, or k ∈ (−∞, 2) t (2,∞).

(c) f will have a local minimum at (0, 0) when ∆(0, 0) > 0, that is,
when 4− k2 > 0, or k ∈ (−2, 2).

(d) The test is inconclusive when fxx = 4 − k2 = 0, that is when
k = ±2.

5. Show that the sum of the x-, y-, and z-intercepts of any tangent plane
to the surface

√
x +
√
y +
√
z =

√
c is a constant. Also, find this

constant. (Note that the x-intercept of a graph is the x-coordinate
of the point where it meets the x-axis. The y- and z-intercepts are
defined analogously.)

Solution. Let P (x0, y0, z0) be any point on the surface. Then the
equation of the tangent plane TP at P can be shown to be

x
√
x0

+
y
√
y0

+
z
√
z0

=
√
c.

Clearly, the x-, y-, and z-intercepts of TP are
√
cx0,

√
cy0, and

√
cz0

respectively. The sum of these intercepts is
√
c(
√
x0 +

√
y0 +
√
z0) = c,

which is a constant.

6. Find the point closest to the origin on the curve of intersection of the
plane 2y + 4z = 5 and the cone z2 = 4x2 + y2.

Solution. Let (x, yz) be an arbitrary point on the curve of inter-
section. Let f(x, y, z) = x2 + y2 + z2 be the square of its distance
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from the origin. We want to minimize f subject to the constraints
g(x, y, z) = 2y + 4z and h(x, y, z) = 4x2 + y2 − z2.
By the method of Lagrange’s Multipliers, we need to simultaneously
solve the following system of equations

∇f = λ∇g + µ∇h
2y + 4z = 5

z2 = 4x2 + y2.

This yields the following system of five equations in five unknowns,

2x = 8xµ

2y = 2λ+ 8yµ

2z = 4λ− 2zµ

2y + 4z = 5

z2 = 4x2 + y2.

There are two possible solutions to the first equation in the system:
x = 0 (Case 1) or µ = 1

4 (Case 2). We now examine these two cases.

Case 1: If x = 0, then from the fifth equation we get that z = ±y.
Upon substituting this in the fourth equation, we get that y = 5

6 or
y = −5

2 . Therefore, the solutions we obtain from this case are (0, 56 ,
5
6)

and (0,−5
2 ,

5
2).

Case 2: If µ = 1
4 , then from the second equation, we can infer that

λ = 0, and by substituting this in the third equation, we get z = 0.
From the fourth equation, we have that y = 5

2 , but this cannot be a
feasible solution, as this would then make it impossible to find an x
that satisfies the fifth equation.

It is easy to see that among the feasible points, (0, 56 ,
5
6) is closest to

origin.

7. Find the absolute maximum and minimum values of f(x, y) = 3+xy−
x − 2y on the closed triangular region with vertices (1, 0), (5, 0), and
(1, 4).

Solution. Let D denote the closed traingular region with the three
vertices (1, 0), (5, 0), and (1, 4). Since f is a polynomial, it is continu-
ous in D, and hence attains its extremal values in D (by the Extreme
Value Theorem). Setting fx = fy = 0 , we obtain (2, 1) as the only
critical point, and f(2, 1) = 1.
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Note that ∂D is a triangle comprised of three line segments: A segment
L1 joining (1, 4) and (1, 0), a segment L2 joining (1, 0) and (5, 0), and a
segment L3 joining (5, 0) and (1, 4). We will now compute the extremal
values of f along ∂D.

Along L1: x = 1 and f(1, y) = 2−y for y ∈ [0, 4], which is a decreasing
function in y. So the maximum value is f(1, 0) = 2 and the minimum
value is f(1, 4) = −2.

Along L2: y = 0 and f(x, 0) = 3−x for x ∈ [1, 5], which is a decreasing
function in x. Hence, the maximum value is f(1, 0) = 2 and the
minimum value is f(5, 0) = −2.

Along L3: y = 5 − x and g(x) = f(x, 5 − x) = −(x− 3)2 + 2 for
x ∈ [1, 5]. This function has a maximum at x = 3 (which we can
conclude by setting g′(x) = 0), where f(3, 2) = 2, and a minimum at
both (1, 4) and (5, 0), where f(1, 0) = f(5, 4) = −1.

Therefore, the absolute maximum of f on D is f(1, 0) = f(3, 2) = 2,
and the absolute minimum is f(1, 4) = f(5, 0) = −2.

8. (Bonus) Using Lagrange’s Multipliers, deduce that if x1, x2, . . . , xn
are positive numbers, then

n
√
x1x2 . . . xn ≤

1

n

n∑
i=1

xi.

In other words, this inequality says that the geometric mean of n
numbers is no larger than the arithmetic mean of the numbers.

Solution. We wish to maximize f(x1, . . . , xn) = n
√
x1 . . . xn subject

to the constraint g(x1, . . . , xn) = x1 + . . .+ xn = c and xi > 0. Then

∇f =

(
1

n
(x1 . . . xn)

1
n
−1(x2 . . . xn), . . . ,

1

n
(x1 . . . xn)

1
n
−1(x1 . . . xn−1)

)
,

and ∇g = (1, . . . , 1). Since the xi can be chosen so that f can be
made arbritraily close to zero, Y cannot be a point where f attains its
minimum. Thus Y is a point of maximum and hence f(X) ≤ f(Y ),
for all X = (x1, . . . , xn) ∈ Rn. In other words, we have the inequality

n
√
x1 . . . xn ≤ n

√
c

n
. . .

c

n
=
c

n
.
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Equating ∇f = λ∇g and using Lagrange’s Multipliers, we have the
following system of n+ 1 equations

1

n
(x1 . . . xn)

1
n
−1(x2 . . . xn) = λ =⇒ (x1 . . . xn)1/n = nλx1

...

1

n
(x1 . . . xn)

1
n
−1(x1 . . . xn−1) = λ =⇒ (x1 . . . xn)1/n = nλxn

x1 + . . .+ xn = c

Thus we have that λ 6= 0 and x1 = x2 = . . . = xn. (For if λ = 0,
then we cannot have that all xi > 0.) Then the last equation in
the system would imply that xi = c

n , for 1 ≤ i ≤ n. We conclude
that the only point (or vector) where f will have an extremal value is
Y =

(
c
n , . . . ,

c
n

)
.

Since the xi can be chosen so that f can be made arbritraily close to
zero, Y cannot be a point where f attains its minimum. Thus Y is a
point of maximum and hence f(X) ≤ f(Y ), for all X = (x1, . . . , xn) ∈
Rn. In other words, we have the inequality

n
√
x1 . . . xn ≤ n

√
c

n
. . .

c

n
=
c

n
.

Since x1 + . . .+ xn = c, we have the required result.
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